Multimodel Inference: Understanding AIC and BIC in Model Selection

Kenneth P. Burnham and David R. Anderson, Multimodel Inference: Understanding AIC and BIC in Model Selection, Sociological Methods & Research 2004 33: 261-304.

The model selection literature has been generally poor at reflecting the deep foundations of the Akaike information criterion (AIC) and at making appropriate comparisons to the Bayesian information criterion (BIC). There is a clear philosophy, a sound criterion based in information theory, and a rigorous statistical foundation for AIC. AIC can be justified as Bayesian using a “savvy” prior on models that is a function of sample size and the number of model parameters. Furthermore, BIC can be derived as a non-Bayesian result. Therefore, arguments about using AIC versus BIC for model selection cannot be from a Bayes versus frequentist perspective. The philosophical context of what is assumed about reality, approximating models, and the intent of model-based inference should determine whether AIC or BIC is used. Various facets of such multimodel inference are presented here, particularly methods of model averaging.

Key Words: AIC • BIC • model averaging • model selection • multimodel inference

Bookmark and Share

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 29 other followers

%d bloggers like this: