Enno Siemsen and Kenneth A. Bollen Least Absolute Deviation Estimation in Structural Equation Modeling Sociological Methods & Research 2007 36: 227-265.

Least absolute deviation (LAD) is a well-known criterion to fit statistical models, but little is known about LAD estimation in structural equation modeling (SEM). To address this gap, the authors use the LAD criterion in SEM by minimizing the sum of the absolute deviations between the observed and the model-implied covariance matrices. Using Monte Carlo simulations, the authors compare the performance of this LAD estimator along several dimensions (bias, efficiency, convergence, frequencies of improper solutions, and absolute percentage deviation) to the full informationmaximum likelihood (ML) and unweighted least squares (ULS) estimators in structural equation modeling. The results for LAD are mixed: There are special conditions under which the LAD estimator outperforms ML and ULS, but the simulation evidence does not support a general claim that LAD is superior to ML and ULS in small samples.

Key Words: least absolute deviation • structural equation modeling • robust estimation • small sample research


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: