Goodness-of-Fit Tests and Descriptive Measures in Fuzzy-Set Analysis

Scott R. Eliason and Robin Stryker Goodness-of-Fit Tests and Descriptive Measures in Fuzzy-Set Analysis Sociological Methods & Research 2009 38: 102-146.

In this article the authors develop goodness-of-fit tests for fuzzy-set analyses to formally assess the fit between empirical information and various causal hypotheses while accounting formeasurement error in membership scores. These goodness-of-fit tests, and the accompanying logic, provide a sound inferential foundation for fuzzy-set methodology. The authors also developdescriptive measures to complement these tests. Examples from Stryker and Eliason (2003) and Mahoney (2003) show how goodness-of-fit tests and descriptive measures may be used to assess individual causal factors as well as conjunctions of factors. The authors show how these tools provide more information in a fuzzy-set analysis than do tests currently in use. In providing this inferential foundation, the authors also show that fuzzy-set methods (a) are no less amenable to falsificationist methods of the Neyman-Pearson type than are standard statistical techniques and (b) may be usefully applied in either an exploratory/inductive or a confirmatory/deductive research design.

Key Words: Fuzzy-set • goodness-of-fit • causal inference • necessity • sufficiency

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: